Freesurfer on the GPU

Richard Edgar
Overview

- What is Freesurfer?
- The Need for Speed
- Linear Registration
- Non-Linear Registration
- Future Needs & Directions
- Conclusion
The Freesurfer Suite
Freesurfer

- Set of tools for MRI brain image analysis
 http://surfer.nmr.mgh.harvard.edu/
- Automatic registration & segmentation of images
- Around 1.3M lines of code
Usage

- Freesurfer used by thousands of researchers worldwide
 - Alzheimers
 - Aspergers
 - etc.
- Used in tandem with other techniques
 - EEG, MEG etc.
- Supported on multiple computing platforms
The Need for Speed
Key Driver

- Clinicians would like to use Freesurfer
 - Could help their diagnostics
- Need fast turnaround
 - Within an hour, or second visit required
- Main Freesurfer pipeline takes 10 hours
 - 3.2 GHz Intel W5580 (Gainestown/Nehalem)
Other Benefits

- ‘Quick’ registration while subject in MRI machine
- Allows better targeting of fMRI/spectroscopy
- Faster population studies
Linear Registration
Linear Registration

- Task Outline
 - Take MRI image and precomputed atlas
 - Find affine transformation for best match
- Why accelerate first?
 - Key task
 - 20 minute runtime
 - Algorithm fairly simple
Basic Algorithm

- Pick affine transformation, A
- Evaluate total ‘energy’ for $O(2000)$ atlas points
- Repeat, seeking lower energy

$$E(A) = \sum_i f(y_i)$$

$$y_i = Ax_i$$
Multiscale Search

- Generate A from a base transform T
- Combine with small transforms $\{U_j\}$
 \[A_j = TU_j \]
- Find the best A from this set
- This becomes the new T
- Generate new set of smaller U_j
Multiscale Search Example

- Start with identity transform
- Generate translations in range \([-5,5]\)
 - Three in each direction
- Evaluate energies
- Select new \(T\)

\[
T = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
Multiscale Search Example

- Start with identity transform
- Generate translations in range [-5,5]
 - Three in each direction
- Evaluate energies
- Select new T

\[
U_0 = \begin{pmatrix}
1 & 0 & 0 & -5 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
U_1 = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & -5 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

\[
U_{26} = \begin{pmatrix}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]
Multiscale Search Example

- Start with identity transform
- Generate translations in range [-5, 5]
 - Three in each direction
- Evaluate energies

 \[
 \begin{align*}
 E_0 &= 500 \\
 E_1 &= 493 \\
 & \vdots \\
 E_{26} &= 619
 \end{align*}
 \]
Multiscale Search Example

- Start with identity transform
- Generate translations in range [-5, 5]
 - Three in each direction
- Evaluate energies
- Select new T

$$T = U_2 = \begin{pmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
Multiscale Search

- Search performed in two stages
 - Translation only
 - Translation, rotation and dilation
- Each set U_j is a hypercube of possibilities
 - e.g. 5 possible translations in each direction etc.
First Acceleration Attempt

- Energy evaluation smallest parallel part
 - Evaluate each atlas point energy by one thread
 - Store results in global memory
 - Reduction sum to get total energy
- Transformation matrix sent from CPU
First Acceleration Attempt

- Atlas and MRI never change
 - Load at start of program
- Use texture for MRI
 - Free interpolation on co-ordinate transform
- Create GPU classes
- Use thrust library for reduction
First Acceleration Attempt

- Results promising
 - Runtime reduced to 4 mins (5x) with C2050
 - Transform identical
- However 2000 threads not much
 - Lots of performance still available
Increasing Parallelism

\[A_j = TU_j \]

- Energy evaluation for each \(A_j \) is independent
- Each \(U_j \) easily computed
- Combination of translations, rotations and dilations
- Parameters set by location in hypercube

\[\{ U_j \} = \{ D_\nu \} \otimes \{ R^x_\mu \} \otimes \{ R^y_\sigma \} \otimes \{ R^z_\nu \} \otimes \{ S_\eta \} \]
Block Indexed Transforms

\[A_j = TU_j \]

- Matrix T sent from CPU
- Compute transform set for \(U_j \) from block index
- First warp computes \(A_j \) and stores in shared memory
- Compute/reduce \(E_j \) in shared memory
- Store to global array

\[\{U_j\} = \{D_\nu\} \otimes \{R^x_\mu\} \otimes \{R^y_\sigma\} \otimes \{R^z_\nu\} \otimes \{S_\eta\} \]
Block Indexed Transforms

- Thrust selects minimum energy (and its index)
- Recover transform parameters from index
 - Use same routines as GPU
- Return to main program
Increasing Parallelism

- Now have hundreds of thread blocks
 - 5 translations in each direction gives 125 blocks
- Much better for the GPU
- Runtime 30s (40x) on C2050
 - Amdahl’s Law now limiting factor
Analysing Results

- Speed up good, but results can differ
- Consider computation of A_j
 \[A_j = TU_j \]
 - First version computed on CPU and sent to GPU
 - Faster version computes A_j on GPU
- This gives slightly different results
Computation of A_j:

- Actually use A_j^{-1}, not A_j.
- First version inverts on CPU and sends that.
- Faster version:
 - Inverts T on CPU, sends to GPU.
 - Trivially inverts components of U_j on GPU.
 - Composes A_j^{-1} on GPU.

$$\{U_j^{-1}\} = \{S_{\eta}\}^{-1} \otimes \{R^z_{\nu}\}^{-1} \otimes \{R^y_{\sigma}\}^{-1} \otimes \{R^x_{\mu}\}^{-1} \otimes \{D_{\nu}\}^{-1}$$
Computation of A_j

- Differences lead to different minimum
 - Occurs on subvoxel-sized transforms
 - End up with different final transform
- Assessing how to minimise differences
Non-Linear Registration
Motivation

- Linear registration insufficient
 - Diagnostics require detailed analysis of structures
 - Differences from atlas most interesting
- Require non-linear registration
 - Each voxel has own displacement
Non-Linear Registration

- Basic search algorithm similar
- Pick a set of displacement vectors
- Evaluate energy of configuration
- Dimensionality is millions
- Runtime over two hours
- 3.2 GHz Intel W5580 (Gainestown/Nehalem)
Energy Evaluation

- Energy split into multiple terms
 \[E_{\text{tot}} = \sum_{i} \lambda_i E_i \]
- Each energy term follows same pattern
 - Evaluate expression for each voxel
 - Sum together
- General CUDA approach
 - Kernel to evaluate energies
 - Thrust for reduction sum
Transform Update

- Splits into multiple terms
 - Terms match energies
- Same pattern for evaluation
 - Each voxel produces new displacement vector
- CUDA acceleration follows same pattern
Converting to CUDA

- Basic prescription worked well
 - Most voxel evaluations independent
- Some floating point and precision issues
 - Able to keep within acceptable limits
- Datastructures were the main problem
Datastructure Conversion

- CPU code uses arrays of structures
 - Pointers to pointers
- 3D volumes use both xyz and zyx ordering
- None of this good for the GPU
- Not so great for the CPU either

```c
typedef struct {
    int width, height, depth;
    GCA_MORPH_NODE ***nodes;
    // ......
} GCA_MORPH;

typedef struct {
    double origx, origy, origz;
    // ..... 
    GCA* gc;
    // Total size 254 bytes
} GCA_MORPH_NODE;
```
Datastructure Conversion

- GPU required structure of arrays
 - Created templated ‘volume’ class to help
- Transfers between host and GPU very slow
 1. Allocate contiguous host arrays
 2. Pack data into these arrays (may have to reorder)
 3. Send across PCIe bus
Need for a Pipeline

- Datastructure conversion a significant bottleneck
 - CPU computation takes 200ms
 - GPU computation takes 20ms
 - Transfer back and forth takes 1s (round trip)
- Have to get entire computation on the GPU
Current Status

- All energy computations now pipelined on GPU
- Runtime now around 90 minutes (C2050)
- Still working on the transform update
- One major stage remaining
- Datastructures even more interesting
- Runtime <60 minutes looks possible
Future Needs & Directions
The Future is Hybrid

- Future machines will be hybrids
- DARPA Exascale Computing Study
- Need programming paradigms to reflect this
Datastructures

- Rethinking of datastructures essential
 - Repacking stage kills performance
- Books teach arrays of structures
 - Nice way to think about things
- Performance requires structures of arrays
- How can we reconcile the two?
Datastructures

- Densely accessed structures are easy
- Create a class which
 - Holds separate arrays internally
 - Supplies operator() to construct individual instance
- Vector volume is an easy example
class VectorVolume {
public:
 float3 operator()(const unsigned int ix,
 const unsigned int iy,
 const unsigned int iz) const {

 float3 res;
 res.x = this->x[ix + this->nx*(iy + this->ny*iz)];
 // etc.
 return(res);
 }

private:
 float *x, *y, *z;
 unsigned int nx, ny, nz;
};
Datastructures

- Sparsely accessed structures more difficult
- Only want to access required components
 - Loading full structure will hurt performance
- Compiler optimisations may help
 - Risky to rely on these

```c
typedef struct {
    double origx, origy, origz;
    // ....
    GCA* gc;
    // Total size 254 bytes
} GCA_MORPH_NODE;
```
Datastructure Management

- Mentioned templated ‘volume’ class
- Actually two classes
 - ‘Management’ class for the CPU
 - ‘Mutator’ class for the GPU
template<typename T>
class VolumeArgGPU {
public:
 const dim3 dims;

 __device__
 T operator()(const int ix,
 const int iy,
 const int iz) const;

 // etc.

private:
 void* const pitchedPtr;
 const size_t dataPitch;
};

template<typename T>
class VolumeGPU {
public:
 operator VolumeArgGPU<T>(void) const;

 void Allocate(const dim3 myDims);
 void Release(void);

 void SendBuffer(const T* const h_buffer);
 void RecvBuffer(T* const h_buffer) const;
 // etc.

protected:
 dim3 dims;
 cudaPitchedPtr d_data;
};
Datastructure Management

- Useful wrapping of functionality on GPU
- Encourage on CPU too?
 - Separate management and computation
- Could define templated interface classes
 - CPU version could use same backend for both
Heterogeneous Computing

- Currently CPU and GPU structures separate
- Contain common metadata
 - e.g. Size of volume
- Can datastructures reflect this?
 - Currently have trouble keeping both updated
A Recipe for Heterogeneity

- Abstract base class defines
 - Metadata
 - Methods

```cpp
class Image {
public:
    virtual void Allocate(const dim2 size) = 0;
    virtual void Release(void) = 0;
    // etc.
protected:
    dim2 imgSize;
};
```
A Recipe for Heterogeneity

- Subclass for specific hardware
- Implement methods
- Contain pointer to data

```cpp
class ImageCPU : public Image {
public:
    // Implementations....
private:
    float* data;
};

class ImageGPU : public Image {
public:
    // Implementations....
private:
    float* d_data;
};
```
A Recipe for Heterogeneity

- Same with algorithms
- Base class defines operation
- Subclasses implement for hardware

```cpp
class Convolve {
public:
  virtual void Convolve(const Image* src,
                         Image* dst,
                         const vector<float> kernel,
                         const char direction) const = 0;
};
```
Heterogeneous Computing

- Main program only deals with base classes
- Supply conversion and assignment operators
- Freely mix code on different hardware
Conclusions
Conclusions

- Freesurfer can benefit greatly from GPUs
 - Linear registration as much as 40x
 - Non-linear registration now half an hour faster
- Need to consider structuring of future programs
 - Abstract implementation details
- Provide high level interface to domain scientists
Acknowledgements

- Bruce Fischl
- Nick Schmansky
- Thomas Witzel
- Doug Greve
- Krish Subramaniam