|
Size: 10558
Comment:
|
← Revision 39 as of 2023-11-01 16:09:01 ⇥
Size: 71
Comment:
|
| Deletions are marked like this. | Additions are marked like this. |
| Line 1: | Line 1: |
| = Scientific Python Mode in the NMR Center = <<TableOfContents(3)>> There is no longer a centrally maintained Python distribution at the Martinos Center. Each group (or user) is directed to create their own Python installion using the Anaconda installer and conda tool to install the versions of modules that work for their group. For generic python scripts, one can try the OS installed python. Be aware the default python in CentOS7 is python2 and in CentOS8 no binary named just "python" exists -- you must explictly run python3 or python2. If you use Python at the Center, make sure to sign up for the [[https://mail.nmr.mgh.harvard.edu/mailman/listinfo/martinos-python|martinos-python mailing list]] to receive updates regarding the Python installation and discuss Python related issues. This list is also where requests for module installation should be made. === Resources for Learning Python === * [[http://scipy-lectures.github.com|Python Scientific Lecture Notes]] * [[http://www.scipy.org/NumPy_for_Matlab_Users|NumPy for Matlab Users]] * The [[http://meetup.bostonpython.com|Boston Python User Group]] regularly holds meetings and organizes introductory Python classes == Installing Python for Yourself with Anaconda == Follow the direction at [[https://docs.anaconda.com/anaconda/install/linux/|Installing Ananaconda]]. You can skip the Prerequisites part as it is done on all our systems. Make sure NOT to install to your home directory. Also I strongly suggest NOT having your ~/.cshrc or ~/.bashrc initialize your Anaconda install immediately on login. Instead setup a shell alias to do that on demand in each shell/Terminal when you need it. Anaconda installs in PATHs can interfer with other Linux systems program. OpenOffice is one package having anaconda in your environment is known to break. === Neuroimaging Python Modules === The following neuroimaging related modules are ones many users will want to install in their Anaconda distribution: * [[http://martinos.org/mne/index.html|mne-python]] for M/EEG analysis * [[http://nipy.sourceforge.net/nibabel|nibabel]] provides access to a large number of neuro-imaging file formats * [[http://nipy.sourceforge.net/nitime|nitime]] for time-series analysis * [[http://code.google.com/p/pydicom|pydicom]] enables you to read, modify and write DICOM files with python code * [[http://pysurfer.github.com|PySurfer]] for visualization and interaction with cortical surface representations of neuroimaging data from FreeSurfer (Requires using environment '''pysurfer''' in anaconda2.7) * [[http://tensorflow.org|TensorFlow]] for machine learning (Requires using either the '''tensorflow''' or '''tensorflow-gpu''' environment in anaconda2.7) Always prefer installing a module using the '''conda''' installer with a prebuilt package. If you cannot find one that then you can resort to building it with '''pip'''. Run '''pip list''' to see a full list of modules Anaconda is also a good way to [[https://docs.anaconda.com/anaconda/packages/r-language-pkg-docs/|install and run R]] == Anaconda Based Scientific Python Installation in /usr/pubsw == <<Anchor(anaconda_python)>> As stated above, this distribution is no longer maintained but it will not be removed. The information below is for historical purposes. === Getting Started === On CentOS 5/6/7 (64-bit) do the following to enable the Anaconda Python installation '''For Python 2.7:''' {{{ export PATH=/usr/pubsw/packages/python/anaconda2.7/bin:${PATH} }}} There are 3 sub-environments in anaconda2.7: '''pysurfer''', '''tensorflow''', and '''tensorflow-gpu''' To use a sub-environment add to your PATH . export PATH=/usr/pubsw/packages/python/anaconda2.7/envs/''environment''/bin:${PATH} '''For Python 3.7:''' {{{ export PATH=/usr/pubsw/packages/python/anaconda3.7/bin:${PATH} }}} Only the CentOS7 install is actively maintained. Run 'conda list' to see all packages installed. Email the python mailing list if you need new packages installed. You can also use the --user option to 'pip install' to install your own modules under your ~/.local directory (beware of your home dir quota) Notes for the python maintainer (person managing anaconda, not users) on saving old environments and creating new ones are [[managing_python|here]] '''Installing your own packages as normal user''' The following uses syntax for the bash shell. Users of the tcsh shell will have to translate 'export' to 'setenv' and so forth Say you are using /usr/pubsw/packages/python/anaconda3.7/bin/python and have that in your path. {{{ export PATH=/usr/pubsw/packages/python/anaconda3.7/bin:$PATH }}} You can use the '--user' option to pip to install packages "just for yourself". If you don't, you will get errors saying you cannot write to /usr/pubsw/packages/python/anaconda3.7. However, when you do by default pip installs packages to ~/.local/lib/python3.7 and this can get quite large and take up all your homedir quota. You can set the following environment variables to put your personal python packages installs anywhere you want: {{{ export PYTHONUSERBASE=/cluster/mygroup/users/raines/local export PYTHONPATH=$PYTHONUSERBASE/lib/python3.7/site-packages export PATH=$PYTHONUSERBASE/bin:$PATH pip install --user --upgrade scipy }}} The --upgrade is optional and forces pip to proceed to install if the packages already exists in /usr/pubsw/packages/python/anaconda3.7 and a newer one is available. You can put these exports in your ~/.bashrc if you want this always on. With the above example, you can see how your local install overrides the base scipy install in /usr/pubsw/packages/python/anaconda3.7 {{{ pinto[0]:~$ pip list | grep scipy scipy 1.3.0 pinto[0]:~$ \rm -rf $PYTHONUSERBASE/lib/python3.7/site-packages/scipy* pinto[0]:~$ pip list | grep scipy scipy 1.2.1 }}} == EPD Based Scientific Python Installation (not-maintained) == <<Anchor(epd_python)>> === Getting Started === On CentOS 5/6 (64-bit) do the following to enable the EPD based Python installation {{{ export PATH=/usr/pubsw/packages/python/epd/bin:${PATH} }}} == Legacy Scientific Python Installation (not-maintained) == <<Anchor(legacy_python)>> Scientific Python mode is now available in the following platform/os combinations in the NMR center * CentOS 64-bit * CentOS 32-bit * MacOSX Leopard (Intel) The "system Python" ( the Python version which already exists in the system ) is not tampered with due to the following reasons: 1. In CentOS systems, the Python version is very old ( 2.3.4 ) which prevents installation of many new modules essential for scientific computing in Python. However, a number of other system modules and programs are dependent on this version and it's best not to disturb this version. 1. Leopard systems have a customized Python 2.5.x, which, again is a necessity for a number of modules. Again, best not to tamper with it. 1. '''Isolation:''' The latest Python ( 2.6.3 ) and its associated modules are installed in /usr/pubsw/packages which are isolated from the system python and its modules. This configuration enables NMR center users to basically access both the versions of the Python and since both exist independently, they don't mess with each other. === Enabling the Scientific Python mode === By default, typing "python" to invoke the Python interpreter brings up the system Python interpreter which can be verified by looking at the version. To enable the scientific python mode, users source the scientific python mode script in the following way : {{{ source /usr/pubsw/packages/python/2.6/scientificpython/bin/bash_activate }}} '''Note:''' strongly recommended. this line can/should be put as an alias in one's ~/.cshrc in the following way: {{{ alias pyactivate="source /usr/pubsw/packages/python/2.6/scientificpython/bin/bash_activate" }}} Once, this is done, the user can just type '''`pyactivate`''' to activate the scientific python mode and type '''`deactivate`''' to get back to the default ( normal system python mode ) In the scientific python mode, the prompt is preceded by the text `(scientificpython)`, which lets the user know that he/she is in the scientific python mode. The user can invoke the python interpreter by typing `python` and notice that the interpreter is now the latest Python's interpreter. Once the user deactivates the mode, the prompt is changed back to the default prompt. '''Note:''' The sourcing script works under tcsh shell. Bash is currently unsupported but will be if there are enough users using bash. === List of installed modules === * Python 2.6.3 * Numpy 1.3.0 * Scipy 0.7.1 (c) * matplotlib 0.99.1.1 ( `TkInter` backend in Mac platform and wxPython backend in CentOS platforms ) (c) * wxPython 2.8.10.1 ( only on CentOS platforms ) (c) * IPython 0.10 * NetworkX 1.0rc1 * nose 0.11.1 * Sphinx 0.6.3 * Cython 0.11.3 * pynifti 0.20090303.1 (c) * SQLAlchemy 0.6.3 * argparse 1.1 * xlrd 0.7.1 * xlwt 0.7.2 * pysqlite 2.6.0 ( except CentOS 32-bit ) * PyXML 0.8.4 (c) * pydicom 0.9.4-1 * nibabel 1.0.0 ( cutting edge master branch Aug 27, 2010 ) '''Note :''' The list of modules indicated by (c) are compiled modules and the rest were installed using easy_install script. === Troubleshooting === 1. '''`pylab`''' doesn't start: This might be because there might be a stray `.matplotlibrc` file, which is already existing in your path preventing the standard backend to load. As an example, pylab can't be imported if the backend is `WXAgg` for Mac platforms or `TkAgg` for CentOS platforms. The fix is to comment out the line starting with `backend` in your `.matplotlibrc` ( usually in ~/matplotlib/matplotlibrc ) === Behind the Scenes === ( For advanced users ) A program called `virtualenv` is made use of to isolate the Pythons. virtualenv enables one to totally switch to a different Python with its own modules ( enabled by the switch --no-site-packages). So when the user sources the `tcsh_activate` script, what he/she is effectively doing is to prefix the system PATH, PYTHONPATH, module PATHs with the custom Python's paths and when the user `deactivate`s he/she gets back all the default paths. virtualenv takes care of this complex paths manipulation behind the scenes. It also makes the modules installation a breeze for the administrator. |
This page has been moved [[https://it.martinos.org/help/python|here]] |
This page has been moved here
