Output of mri_glmfit-sim for a left hemisphere surface-based fMRI analysis (encode-v-base contrast):
# ClusterNo Max VtxMax Size(mm^2) MNIX MNIY MNIZ CWP CWPLow CWPHi NVtxs Annot 1 11.876 5844 8068.22 -30.8 -90.0 -6.7 0.00010 0.00000 0.00020 13205 lateraloccipital 2 6.278 47405 509.89 -8.4 19.7 44.6 0.00010 0.00000 0.00020 957 superiorfrontal 3 6.181 9914 176.02 -32.1 -16.8 -29.7 0.00520 0.00430 0.00610 372 entorhinal 4 5.402 14506 801.47 -37.9 1.7 26.1 0.00010 0.00000 0.00020 1736 precentral 5 4.569 110505 214.43 -44.7 9.7 17.8 0.00150 0.00100 0.00200 366 parsopercularis 6 4.535 117390 223.77 -48.3 28.5 1.8 0.00120 0.00080 0.00170 411 parstriangularis
- Much of the header has been removed for clarity
- Max = maximum voxel-wise signifiance in the cluster
VtxMax - vertex number of the maximum
- Size(mm2) - size of cluster in millimeters square
- MNIX, MNIY, MNIZ - MNI305 Coordinates of maximum
- CWP - p-value of the cluster (CWP=Cluster-Wise P-value)
- CWPLow - lower 95% confidence interval of CWP
- CWPHi - upper 95% confidence interval of CWP
- NVtxs - number of vertices in cluster (each vertex will not have the exact same area, you can estimate mean vertex area by dividing total surface area by the number of vertices)
- Annot - name of annotation that maximum falls into