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Image-based Prediction
Mert R. Sabuncu Koen Van Leemput

for the Alzheimer Disease Neuroimaging Initiative (ADNI)

Abstract—This paper presents the Relevance Voxel Machine
(RVoxM), a dedicated Bayesian model for making predictions
based on medical imaging data. In contrast to the generic
machine learning algorithms that have often been used for this
purpose, the method is designed to utilize a small number of
spatially clustered sets of voxels that are particularly suited for
clinical interpretation. RVoxM automatically tunes all its free
parameters during the training phase, and offers the additional
advantage of producing probabilistic prediction outcomes. We
demonstrate RVoxM as a regression model by predicting age from
volumetric gray matter segmentations, and as a classification
model by distinguishing patients with Alzheimer’s disease from
healthy controls using surface-based cortical thickness data.
Our results indicate that RVoxM yields biologically meaningful
models, while providing state-of-the-art predictive accuracy.

I. INTRODUCTION

Medical image-based prediction aims at estimating a clin-
ically or experimentally relevant quantity directly from indi-
vidual medical scans. In a typical scenario, the properties of
prediction models are learned from so-called training data – a
set of images for which the quantity of interest is known. The
trained models can then be applied to make predictions on
new cases. In so-called image-based regression problems, the
quantity to be estimated is continuously valued, such as a score
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evaluating a subject’s brain maturity. In other cases, the aim is
to predict a discrete value indicating one of several conditions,
such as a clinical diagnosis, which is a classification problem.

Image-based prediction models derive their predictive power
from considering all image voxels simultaneously, distilling
high prediction accuracy from many voxel-level measurements
that are each only weakly predictive when considered indi-
vidually. This approach is fundamentally different from more
traditional ways of relating image content to the biomedical
context, such as voxel- and deformation-based morphome-
try [1]–[3], cortical thickness analysis [4], or voxel-level fMRI
analysis [5], in which maps of affected anatomical areas are
generated by merely considering each location separately. Un-
like such “mapping” approaches, prediction methods explore
patterns of association between voxels, offering powerful new
analysis tools in such applications as “mind reading” [6], [7],
studying neural information processing [8]–[10], image-based
clinical diagnosis [11]–[16], and examining global patterns
associated with healthy development, aging, pathology or other
factors of interest [17], [18].

The principal difficulty in obtaining good regression and
classification models for medical imaging data is the enormous
number of voxels in images, which leads to two interconnected
modeling challenges. First, since the number of training im-
ages is typically several orders of magnitude smaller than the
number of voxels, the complexity of voxel-based prediction
models needs to be strictly controlled in order to avoid so-
called “over-fitting” to the training data, where small modeling
errors in the training images are obtained at the expense of
poor prediction performance on new cases. Second, the aim is
often not only to predict well, but also to obtain insight into
the anatomical or functional variations that are driving the
predictions – in some applications, such as task-related fMRI,
this is even the primary result. Interpreting complex patterns
of association between thousands of image voxels is a highly
challenging task, especially when the results indicate that all
the voxels are of importance simultaneously; when the voxels
contributing most to the predictions appear randomly scattered
throughout the image area; or when the relevant inter-location
relationships are non-linear in nature [19]–[22].

Various approaches for restricting model complexity in
medical image-based prediction have been proposed in the
literature, often with the adverse effect of reducing biological
interpretability. Some methods only allow a selected few
voxels to contribute to the prediction, either by performing
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voxel-wise tests a priori [7] or by pruning less predictive
voxels as part of a larger modeling process [23]–[25]. Others
aim at using spatially connected patches of voxels as “features”
instead of individual voxels themselves, either by averaging
over a priori defined anatomical structures [7], [20], [26],
[27], or by trying to cluster neighboring voxels in such
a way that good prediction performance is obtained [22].
Yet others rely directly on more off-the-shelf techniques, for
instance using only a few of all the available training subjects
in sparse kernel-based machine learning methods [14], or
reducing feature dimensionality by spatial smoothing, image
downsampling, or principal component analysis [9], [28], [29].

In order to obtain prediction models that are expressly
more biologically informative, some authors have started to
exploit the specific spatial, functional, or temporal structure
of their imaging data as a basis for regularization [30]–
[37]. Building on this idea, we propose in this paper the
Relevance Voxel Machine (RVoxM), a novel Bayesian method
for image-based prediction that combines excellent prediction
accuracy with intuitive interpretability of its results. RVoxM
considers a family of probabilistic models to express that (1)
not all image locations may be equally relevant for making
predictions about a specific experimental or clinical condition,
and (2) image areas that are somehow biologically connected
may be more similar in their relevance for prediction than
completely unrelated ones. It then assesses which model within
this family explains the training data best, using the fact that
simple models that sufficiently explain the data without un-
necessary complexity are automatically preferred in Bayesian
analysis [38]. As we shall see, this technique yields models
that are sparse – only a small subset of voxels is actually
used to compute predictions – as well as spatially smooth –
in our experiments we used spatial proximity as a measure
of biological connectivity. Such models are easier to interpret
than speckles of isolated voxels scattered throughout the image
area, and at the same time have an adequately reduced number
of degrees of freedom to avoid over-fitting to the training data.

Compared to many existing image-based prediction meth-
ods, our Bayesian approach has several advantages:
• Simultaneous regularization, feature selection, and

biological consistency: Rather than computing discrim-
inative features in a separate pre-processing step [22],
[25], [28], or using post-processing to analyze which
subset of voxels contributes most to the predictions [9],
[34], [37], the proposed method automatically determines
which voxels are relevant – and uses only these voxels
to make predictions – in a single consistent modeling
framework. In line with anatomical expectations, the ob-
tained maps of “relevance voxels” have spatial structure,
facilitating biological interpretation and contributing to
the regularization of the method.

• Self-tuning: The proposed method automatically tunes
all the parameters of the prediction model, allowing the
model to adapt to whatever degree of spatial sparseness
and smoothness is indicated by the training data. In
contrast, other image-based prediction methods rely on
regularization parameters that need to be determined
externally, either by manual selection [30], [33], [34]

or using cross-validation [22], [26], [28], [31], [35],
[37]. As illustrated in [39], the latter can be extremely
challenging when several regularization parameters need
to be determined simultaneously.

• Probabilistic predictions: In contrast to the decision ma-
chines [40] widely used in biomedical image classifica-
tion, which aim to minimize the risk of misclassification,
the method we propose computes posterior probabilities
of class membership, from which optimal class assign-
ments can subsequently be derived. The ability to obtain
probabilistic predictions rather than “hard” decisions is
important for building real-world diagnostic systems, in
which image-based evidence may need to be combined
with other sources of information to obtain a reliable
diagnosis, and the risk of making false positive diagnoses
needs to be weighed differently than that of false negative
ones [41].

We originally presented RVoxM in a short conference paper
that only dealt with the regression problem [42]. The current
manuscript extends the theory to encapsulate classification,
contains more details on theoretical derivations, and includes
more extensive experimental results.

A reference Matlab implementation of the method is freely
available from the authors.

II. RVOXM FOR REGRESSION

For regression problems, the aim is to predict a real-valued
target variable t ∈ R from an image
x = (x1, . . . , xM−1, 1)T, where xi ∈ R denotes a voxel-level
measurement at the voxel indexed by i, and M −1 is the total
number of voxels. For notational convenience in the remainder,
an extra element with value 1 is also included to account for
constant offsets in our predictions.

We use a standard linear regression model for t, defined by
the Gaussian conditional distribution

p(t|x,w, β) = N (t|y(x; w), β−1) (1)

with variance β−1 and mean

y(x; w) =
M−1∑
i=1

xiwi + wM = wTx, (2)

where w = (w1 · · ·wM )T ∈ RM denotes a vector of unknown,
adjustable “weights” encoding the strength of each voxel’s
contribution to the prediction of t. In order to complete the
model, we also define a prior on these weights that expresses
our prior anatomical expectations that not all locations in
the image may be equally predictive, and that biologically
related areas may be more similarly predictive than completely
unrelated ones. In particular, we use a prior of the form

p(w|α, λ) ∝ exp
(
− 1

2

M∑
i=1

αiw
2
i −

λ

2
‖Γw‖2

)
, (3)

where α = (α1, . . . , αM )T and λ are so-called hyper-
parameters, and Γ is a matrix chosen so that elements of
the vector Γw evaluate to large values when biologically
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connected voxels happen to have very different weights in w,
effectively making such configurations a priori less likely.

The role of the hyper-parameters in eq. (3) is to express a
wide range of regression models that can each be tried and
tested, ranging from very complex models with many degrees
of freedom (when all the hyper-parameters are set to small
values) to heavily regularized ones with limited expressive
power (when all the hyper-parameters are large). It is these
hyper-parameters that are automatically learned from training
data, as will be explained in section II-A, allowing the data
to select the appropriate form of the model. When a large
value for λ is selected, the model encodes a preference for
configurations of w in which biologically connected voxels
have similar weights. At the same time, setting some of the
hyper-parameters αi to very large values (infinity in theory)
will clamp the values for the weights wi in the corresponding
voxels to zero, effectively “switching off” the contribution of
these voxels to the prediction and removing them from the
model. This ability for the data to determine which inputs
should influence the predictions is similar to the Automatic
Relevance Determination (ARD) mechanism [43] used in the
Relevance Vector Machine (RVM) [44]; in fact, for λ = 0
our model reduces to an RVM with the voxel-wise intensities
stacked as basis functions.

For the remainder of this paper, we will use a matrix Γ that
simply encourages local spatial smoothness of w as a proxy
for biological connectivity. In particular, we will use a sparse
matrix with as many rows as there are pairs of neighboring
voxels in the image; for a pair {i, j}, the corresponding row
has zero entries everywhere expect for the ithand jth column,
which have entries −1 and 1, respectively. To simplify notation
in subsequent sections, we re-write eq. (3) in the form

p(w|α, λ) =
|P|1/2

(2π)M/2
exp(−1

2
wTPw), (4)

which shows that the prior is a zero-mean Gaussian with
inverse covariance P = diag(α) + λL, where L = ΓTΓ is
also known as the Laplacian matrix in graph theory.

While our choice of Γ here simply penalizes spatial gradi-
ents in w, it is worth noting that more advanced measures
of biological connectivity can easily be integrated into the
model as well – each with its own hyper-parameter that is
automatically determined. Examples of such measures might
include left-right symmetry relationships, as well as voxel-
to-voxel connectivity strengths derived from functional image
studies or based on detailed anatomical segmentations.

A. Training

Given a set of N training images xn, n = 1, . . . , N
with corresponding target values tn, n = 1, . . . , N , we can
determine the appropriate form of the regression function by
estimating the hyper-parameters that maximize the so-called
marginal likelood function, which expresses how probable
the observed training data is for different settings of the
hyper-parameters. Figure 1 shows the graphical model which
depicts the dependency relationship between the variables.
Collecting all the training images in the N × M “design”

Fig. 1. Graphical representation of the regression model with N training
subjects. Random variables are in circles and parameters are in squares.
Shaded variables are observed. The plate indicates replication of N times.

matrix X = [x1, · · · ,xN ]T, and the corresponding target
values in the vector t = (t1, . . . , tN )T, the marginal likelihood
function is obtained by integrating out the weight parameters,
yielding [41]

p(t|X,α, λ, β) =
∫
w

(
N∏

n=1

p(tn|xn,w, β)

)
p(w|α, λ)dw

= N (t|0,C), (5)

where

C = β−1I + XP−1XT. (6)

Our goal is now to maximize eq. (5) with respect to the
hyper-parameters α, λ, and β – known in the literature as
the evidence procedure [45], type-II maximum likelihood esti-
mation [46], or restricted maximum likelihood estimation [47].

We follow a heuristic optimization strategy similar to
the one proposed in [45], which has also been used to
train RVM regression models [44]. In particular, we maxi-
mize ln p(t|X,α, λ, β) – which is equivalent to maximizing
p(t|X,α, λ, β) but computationally more convenient – by
observing that its derivatives to the hyper-parameters are given
by the following expressions (see Appendix A for detailed
derivations):

∂ ln p(t|X,α, λ, β)
∂αi

=
1

2αi

(
1− αiΣii − λ

(
P−1L

)
ii
− αiµ

2
i

)
(7)

∂ ln p(t|X,α, λ, β)
∂β

=
1
2

(
N

β
− trace

(
XΣXT)− ‖t−Xµ‖2

)
(8)

∂ ln p(t|X,α, λ, β)
∂λ

= −1
2

(
trace

( (
Σ−P−1

)
L
)

+ µTLµ
)
, (9)
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where Σii is the ith diagonal component of the matrix

Σ = (βXTX + P)−1 (10)

and µi the ith component of the vector

µ = βΣXTt. (11)

Because their derivatives are zero at a maximum of the
objective function, one strategy of optimizing for α and β
is to equate eq. (7) and (8) to zero and re-arranging, yielding
the following re-estimation equations:

αnew
i =

1− αiΣii − λ
(
P−1L

)
ii

µ2
i

(12)

and

βnew =
N − trace(βXΣXT)

‖t−Xµ‖2
. (13)

In Appendix B, we show that both eq. (12) and (13) are
guaranteed to yield non-negative αnew

i and βnew.
For the hyper-parameter λ, we use a standard gradient-

ascent approach, yielding the following update equation:

λnew = λ− κ
(

trace
( (

Σ−P−1
)
L
)

+ µTLµ
)

(14)

where κ is an appropriate step-size.
Training now proceeds by choosing initial values for

the hyper-parameters α, β, and λ, and then iteratively re-
computing Σ and µ (eq. (10) and (11)) and the hyper-
parameters (eq. (12), (13), and (14)), each in turn, until
convergence. In our implementation, we initialize with αi = 1,
∀i, λ = 1, and β = 10/variance(t). We monitor the value
of the objective function ln p(t|X,α, β, λ) at each iteration,
and terminate when the change over the previous iteration is
below a certain tolerance. Section IV provides detailed pseudo-
code for this algorithm, optimized for the computational and
memory requirements of image-sized problems.

Although we have no theoretical guarantees that the pro-
posed update equations for the hyper-parameters improve the
objective function at each iteration, our experiments indicate
that this is indeed the case.

B. Prediction

Once we have learned suitable hyper-parameters α∗, λ∗,
and β∗ from the training data, we can make predictions about
the target variable t for a new input image x by evaluating the
predictive distribution

p(t|x,X, t,α∗, λ∗, β∗)

=
∫
w

p(t|x,w, β∗)p(w|X, t,α∗, λ∗)dw, (15)

where p(t|x,w, β∗) is given by eq. (1) and

p(w|X, t,α∗, λ∗)

=

(∏N
n=1 p(tn|xn,w, β∗)

)
p(w|α∗, λ∗)

p(t|X,α∗, λ∗, β∗)
= N (w|µ∗,Σ∗) (16)

is the posterior distribution over the voxel weights. Σ∗ and
µ∗ are defined by eq. (10) and (11), in which α, λ, and β
have been set to their optimized values.

It can be shown that the predictive distribution of eq. (15)
is a Gaussian with mean

µ∗Tx (17)

and variance 1/β∗+xTΣ∗x [41]. In practice, we will therefore
use eq. (17) for making predictions, i.e., the linear regression
model of eq. (2) where the voxel weights w have been set
to µ∗. As we shall see in section V, most of these weights
will typically be zero with the remaining voxels appearing
in spatially clustered patches, immediately highlighting which
image areas are driving the predictions.

III. RVOXM FOR CLASSIFICATION

In image-based binary classification, the aim is to predict a
binary variable b ∈ {0, 1} from an individual image x. As in
regression, we define the linear model

y(x; w) = wTx, (18)

but transform the output by a logistic sigmoid function

σ(y) =
1

1 + exp(−y)
(19)

to map it into the interval [0, 1]. We can then use σ(y(x; w))
to represent the probability that b = 1 (Bernoulli distribution):

p(b|x,w) = σ(y(x; w))b(1− σ(y(x; w)))1−b, (20)

and complete the model by using the same prior on w as in
the regression case (eq. (3)). Note that, unlike in the regression
model, there is no hyper-parameter β for the noise variance
here.

Training the classification model entails estimating the
hyper-parameters that maximize the marginal likelihood func-
tion

p(b|X,α, λ) =
∫
w

p(b|X,w)p(w|α, λ)dw, (21)

where

p(b|X,w) =
N∏

n=1

p(bn|xn,w)

and b = (b1, . . . , bN )T contains the known, binary outcomes
for all the training images xn, n = 1, . . . , N . In contrast to
the regression case, the integration over w cannot be evaluated
analytically, and we need to resort to approximations. In
Appendix C, we show that around a current hyper-parameter
estimate {α̃, λ̃}, we can map the classification problem to a
regression one:

ln p(b|α, λ) ' lnN (̃t|0, C̃) + const, (22)

where we have defined a covariance matrix

C̃ = B̃−1 + XP−1XT

and local regression “target variables”

t̃ = Xw̃MP + B̃−1(b− σ̃)
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with the inverse variances of subject-specific regression
“noise” β̃n = σ̃n(1 − σ̃n) collected in the diagonal ma-
trix B̃ = diag(β̃1, . . . , β̃N ), and σ̃n = σ(xT

nw̃MP) and
σ̃ = (σ̃1 . . . , σ̃N )T. In these equations, w̃MP are the “most
probable” voxel weights given the hyper-parameters {α̃, λ̃}:

w̃MP = arg max
w

p(w|X,b, α̃, λ̃), (23)

which involves solving a concave optimization problem. As
detailed in Appendix C, we use Newton’s method to perform
this optimization.

Using the local mapping of eq. (22), learning the hyper-
parameters now proceeds by iteratively using the regression
update equations (12) and (14), but with µ and Σ defined as

µ = ΣXTB̃t̃. (24)

and
Σ = (XTB̃X + P)−1. (25)

Once we have learned the hyper-parameters α∗ and λ∗ this
way, we can make predictions about the target variable b for
a new input image x by evaluating the predictive distribution

p(b = 1|x,X, t,α∗, λ∗)

=
∫
w

p(b = 1|x,w)p(w|X, t,α∗, λ∗)dw

' σ(τµ∗Tx), (26)

where τ = (1 +πxTΣ∗x/8)−1/2, and µ∗ and Σ∗ are defined
by eq. (24) and (25) in which the hyper-parameters have been
set to their optimized values. The approximation in eq. (26)
is based on the so-called Laplace approximation and on the
similarity between the logistic sigmoid function and the probit
function; see [41], pp. 217–220, for details. Eq. (26) can be
thresholded at 0.5 to obtain a discrete prediction.

IV. IMPLEMENTATION

In most applications where RVoxM will be useful, the
number of voxels to consider (M ) is so large (e.g., 104 or 105)
that a naive implementation of the proposed training update
equations is computationally prohibitive – computing Σ alone
already involves inverting a dense M ×M matrix, which can
take O(M3) time.

One approach to alleviate the computational burden is to
exploit the sparsity of the matrix P and use Woodbury’s matrix
identity [48] to compute Σ as

Σ = P−1 − ZTC−1Z, (27)

where Z = XP−1. Since P is sparse (with a the number
of nonzero entries in each row being independent of M ), the
complexity of computing P−1 and subsequently Z is O(M2)
and O(MN), respectively. A naive computation of C using
eq. (6) is O(M2N). Yet re-writing C as

C = β−1I + ZXT, (28)

reduces the complexity of computing C to O(N2M). Invert-
ing C is O(N3). Putting all this together, we can compute Σ
using eq. (27) in O(M2 + MN + N2M + N3) time. Since
the number of available training subjects (N ) is typically in

the hundreds at best, in practice this means a reduction in
computation time from O(M3) to O(M2).

Since M is so large, even an O(M2) complexity is still a
heavy computational burden. In practice, however, many of
the αi’s tend to grow very large, effectively switching off
the contribution of the corresponding voxels. We therefore
resort to the type of greedy algorithm originally used for
RVM training [44], whereby once a voxel has been switched
off (i.e., its αi has become larger than some threshold –
in our implementation 1012 – it gets permanently discarded
from the remaining computations. This provides a significant
acceleration of the learning algorithm, as gradually more and
more voxels are pruned from the model. To see how voxels can
be removed from the computations, consider that Pii → ∞
if αi → ∞, and, as a result, the i’th row and i’th column of
P−1 and Σ become zero vectors and µi → 0. Consequently,
the update equations for the hyper-parameters are unaffected
by simply deleting the i’th column from X, and both the i’th
column and the i’th row from Σ and P−1.

Finally, rather than manipulating the dense M×M matrices
Σ and P−1 in their entirety, it is possible to compute their
relevant contributions only one row at a time, avoiding the
need to explicitly store such prohibitively large matrices.

Algorithm IV.1 provides pseudo-code for a RVoxM training
procedure that has been optimized along the lines described
above. For the classification case, a subroutine that optimizes
for wMP is given in Algorithm IV.2.

V. EXPERIMENTS

In order to illustrate the ability of RVoxM to yield in-
formative models that predict well, we here present two
experiments using T1-weighted structural magnetic resonance
imaging (MRI) scans. The first experiment aims at predicting
a subject’s age from a volumetric gray matter segmentation
(i.e., a regression scenario), whereas the second one focuses
on discriminating Alzheimer’s patients from healthy controls
using surface-based cortical thickness measurements (illustrat-
ing a classification application).

A. Predicting Age

Both the structure and function of the human brain undergo
significant changes over a person’s life-time, and these changes
can be detected using neuroimaging [49], [50]. Image-based
prediction methods for estimating an individual’s age from
a brain MRI scan have attracted recent attention [17], [29],
[51] since they provide a novel perspective for studying
healthy development and aging patterns, while characterizing
pathologic deviations in disease. In the current experiment,
we employed the publicly available cross-sectional OASIS
dataset [52], which consists of 436 subjects aged 18 to 96.
For each subject, 3 or 4 individual T1-weighted MRI scans
acquired in single scan sessions were averaged to obtain a
single high-quality image. The subjects are all right-handed
and include both men and women. 100 of the subjects over
the age of 60 have been clinically diagnosed with very mild
to moderate Alzheimer’s disease (AD).
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Algorithm IV.1: RVOXM TRAINING(L,X, t or b)

comment: Input t for regression, b for classification

comment: Ai. and A.i denote the i’th row and column of a matrix A, respectively

comment: ei. denotes a vector of all zeros except the i’th entry, which is a one

cost tol← 10−5, αmax = 1012

cost←∞, prev cost←∞
RelevantVoxels← {1, . . . ,M}
λ← 1, α← 1
if regression

then β ← 10/variance(t)
iter← 0
repeat
iter← iter + 1
if classification

then

8>><>>:
wMP ← arg maxw p(w|X,b,α, λ) comment: Call Algorithm IV.2.

B← diag(β1, . . . , βN ) comment: βn = σn(1− σn) and σn = σ(Xn.w)

t← XwMP + B−1(b− σ) comment: σ = (σ1 . . . , σ2)T

else B← βI
P← diag(α) + λL
comment: P and B are stored as sparse matrices

Z← XP−1 comment: Compute one row at a time by solving PZT
i. = XT

i.

C← B−1 + ZXT

Compute and save C−1

DeleteVoxels← {}
a← 0
for each i ∈ RelevantVoxels

do

8>>>>>>>>><>>>>>>>>>:

Compute (P−1)i. comment: Compute by solving P(P−1)i. = ei

Σi. ← (P−1)i. − Zi.C
−1Z

a← a +
`
Σi. − (P−1)i.

´
L.i

µi ← Σi.X
TBt

αi ← 1−αiΣii−λ(P−1)i.L.i

µ2
i

if (αi > αmax)
then DeleteVoxels← DeleteVoxels + {i}

prev cost← cost
cost← − 1

2
ln |C| − 1

2
tTC−1t

if regression

then β ← N−trace(βXΣXT)

‖t−Xµ‖2

κ← 1√
iter

λ← λ− κ
`
a + µTLµ

´
RelevantVoxels← RelevantVoxels−DeleteVoxels
X← X−DeleteVoxels, L← L−DeleteVoxels, α← α−DeleteVoxels

comment: Columns and rows corresponding to deleted voxels are removed.

until (|(prev cost− cost)/(cost)| < cost tol)

Algorithm IV.2: OPTIMIZE w(X,b,w,P,RelevantVoxels)

tol← 0.01
Z← XP−1

repeat
wold ← w
B← diag(β1, . . . , βN ) comment: βn = σn(1− σn) and σn = σ(Xn.w)

C← B−1 + ZXT

Compute and save C−1

s← Xσ
for each i ∈ RelevantVoxels

do

8<:Compute (P−1)i.
Σi. ← (P−1)i. − Zi.C

−1Z
wi ← wi + Σi. (Xb− s−Pw)

until ‖wold −w‖ < tol
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Fig. 2. RVoxM based predicted age versus real age in a cohort of 336
cognitively healthy subjects.

We processed all the MRI scans with SPM81, using default
settings, to obtain spatially aligned gray matter maps for each
subject. Briefly, the SPM software performs a simultaneous
registration and segmentation of each MRI volume [53],
aligning the image non-linearly with a standard template
while at the same time computing each voxel’s probability
of belonging to different tissue types, such as gray or white
matter. The resulting gray matter probability maps are then
spatially transferred over to the coordinates of the template and
modulated by the Jacobian of the non-linear transformations,
yielding the so-called gray matter density maps commonly
analyzed in voxel-based morphometry (VBM) studies [1].

Unsmoothed gray matter density values were used as the
voxel-level measurements xi in the present experiment. The
average gray matter density volume computed on the training
data was thresholded at 50% to obtain a mask of voxels that
went into the analysis. On the analyzed data, there were an
approximate total of 75k voxels in the mask. We employed a
6-connectivity neighborhood to define the Laplacian matrix.

To assess generalization accuracy and stability, we per-
formed 5-fold cross-validation on the data from the cognitively
normal and healthy subjects (N = 336, 43.7 ± 23.8 years,
62.5% female). In each cross-validation session, four fifths
of the data were used for training an RVoxM. This model
was then applied to the remaining fifth for testing. Each
training session took about 100 CPU hours with our Matlab
implementation, on a Xeon 5472 3.0GHz CPU.

Figure 2 shows the predicted age versus the real age for
each subject. Note that each subject was treated as a test
subject in only one of the 5 cross-validation sessions; the
figure shows the predictions pooled across the sessions. The
correlation between the real vs. the predicted age is 0.94, and
the root mean square error (RMSE) is less than 7.9 years. It
is interesting to note that the deviation from the best fit line
seems to increase for older subjects who are beyond middle-
age. This is likely driven by latent pathology, as recent studies

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/

have estimated that up to 30% of cognitively normal elderly
subjects are actually at the pre-clinical stages of Alzheimer’s
disease [54].

Figure 3 illustrates the “relevance voxels” – those voxels
that have non-zero contribution in the final prediction model
– across the five training sessions. It can be appreciated that
most voxels have a zero contribution (i.e., the model is sparse),
and that the relevance voxels occur in clusters, providing clear
clues as to what parts of the gray matter are driving the age
prediction process. Furthermore, the relevance voxels exhibit
an overall consistent pattern across the five training sessions,
as can be deduced from the yellow regions in the bottom
row of Figure 3, thus providing evidence that these patterns
are likely to be associated with the underlying biology and
can be interpreted. The relevance patterns include peri-sylvian
areas (e.g., Heschl’s gyrus) as well as deep structures (e.g.,
thalamus), and are in broad agreement with published aging-
associated morphology maps (e.g., [55]).

In addition to RVoxM, we also tested two other methods
as benchmarks. The first method, referred to as “RVM”,
was specifically proposed recently for estimating age from
structural MRI [29]. It uses a principal component analysis
(PCA) to achieve a dimensionality-reduced representation of
the image data, and subsequently applies a linear RVM algo-
rithm in the resulting feature space. We used the optimal im-
plementation settings that were described in [29] and a public
implementation of RVM2. The second benchmark (“RVoxM-
NoReg”) was an implementation of RVoxM with no spatial
regularization, i.e., with the hyper-parameter λ intentionally
clamped to zero. A comparison with the latter benchmark gives
us an insight into the effect of spatial regularization on the
results.

Figure 4 plots the average RMSE for all three algorithms
(top), as well as the average difference between the individual-
level prediction errors (square of predicted age minus true
age) obtained by RVoxM and the other two methods (bottom).
Overall, RVoxM yields the best accuracy with a RMSE less
than 7.9 years – the difference between RVoxM’s performance
and the other two benchmarks is statistically significant (paired
t-test, P < 0.05). RVoxM also attains the highest correlation
(r-value) between the subjects’ real age and predicted age
among all three methods: 0.94 for RVoxM vs. 0.9 and 0.93
for RVM and RVoxM-NoReg, respectively. We note that
[29] reported a slightly better correlation value for RVM
(r = 0.92), which is probably due to the increased sample
size (410 training subjects instead of the 268 training subjects
used here).

Finally, we also examined the deviation of the predicted
“brain age” from the real age particularly in elderly subjects.
Recent work on a young cohort attributed such a deviation
observed in fMRI data to the nonlinear development trajectory
of the brain [17]. Moreover, neuroimaging studies on dementia
and Alzheimer’s have suggested that these diseases might
accelerate atrophy in the brain [56]. As such, we hypothesized
that the mini mental state examination (MMSE) score, a
cognitive assessment that predicts dementia, may explain some

2http://www.vectoranomaly.com/downloads/downloads.htm
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Fig. 3. Relevance voxels for predicting age, overlaid on the average gray matter density image across all subjects. Top row: The µ∗ map (eq. (11) in which
the hyper-parameters have been set to their optimized values) averaged across 5 cross-validation sessions. Voxels with zero weight are transparent. Bottom
row: The frequency at which a voxel was selected as being relevant (i.e., receiving a non-zero weight in a training session) across the 5 cross-validation
sessions.
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Fig. 4. Top: average root mean square error for the three age regression
models. Bottom: average difference between subject-level prediction errors,
measured as the square of real age minus predicted age. (A) Error of RVM
minus error of RVoxM. (B) Error of RVoxM-NoReg minus error of RVoxM.
Error bars show the standard error of the mean.

of the non-linear behavior in the predicted “brain age” of
elderly subjects. To test this hypothesis, we used the RVoxM
from the first of the 5-fold cross-validation experiment, which
was trained on 268 cognitively healthy subjects. We applied
this RVoxM model to predict the “brain age” of 100 AD
patients and 30 cognitively healthy elderly subjects from the
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Fig. 5. RVoxM based predicted age versus real age in a cohort of 30
cognitively healthy subjects and 100 AD patients.

test group (see Figure 5). Note that none of these subjects
were used to train the RVoxM and we excluded 33 young
healthy subjects, for which we did not have an MMSE score.
We then conducted a linear regression analysis, where the
predicted age was treated as the outcome variable and real
age, MMSE and sex were the independent variables. Both the
real age (coefficient: 0.84, P-val < 10−22) and the MMSE
score (coefficient: -0.77, P-val< 10−4) were independently
associated with the predicted age, but the subject’s sex was
not. This suggests that pathological processes that are reflected
as cognitive decline might explain some of the deviation in the
predicted brain age.
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B. Predicting Alzheimer’s Diagnosis

Here we demonstrate RVoxM as a classifier for discrim-
inating healthy controls from AD patients based on their
brain MRI scans. Instead of working with volumetric MRI
data, we implemented RVoxM on a 2D surface model of the
cerebral cortex, further demonstrating the versatility of the
proposed algorithm. We applied RVoxM to the publicly avail-
able Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset3, which consisted of 818 subjects at the time of writing.
At recruitment, 229 subjects were categorized as cognitively
healthy; 396 subjects as amnestic Mild Cognitive Impairment
(MCI) – a transitionary, clinically defined pre-AD stage; and
193 subjects as AD. All subjects were clinically followed up
every six months, starting from a baseline clinical assessment.
Each follow-up visit typically included a cognitive assessment
and a structural MRI scan. In the present experiment, we
only analyzed baseline MRI scans. We processed all MRI
scans with the FreeSurfer software suite [57], [58], computing
subject-specific models of the cortical surface as well as
thickness measurements across the entire cortical mantle [4].
Subject-level thickness measurements were then transferred to
a common coordinate system, represented as a icosohedron-
based triangulation of the sphere, via a surface-based nonlinear
registration procedure [59], and analyzed by RVoxM. We
utilized the so-called fsaverage6 representation, consisting of
approximately 82,000 vertices across the two hemispheres
with an inter-vertex distance of approximately 2 mm. We
emphasize that we did not smooth these cortical thickness
maps for any of our experiments. The matrix L for the
spatial regularization was obtained by using the neighborhood
structure of the triangulated mesh.

Our analysis used MRI scans from 150 AD patients (75.1±
7.4 years, 47% female), and an age and sex-matched control
group (N=150; cognitively normal (CN); 76.1±5.8 years; 47%
female)4. As in the age prediction experiment, we conducted a
five-fold cross-validation, where each clinical group was first
divided into five subgroups. During each fold, one AD and
one CN subgroup were set aside as the test set and the RVoxM
classification algorithm was trained on the remaining subjects,
which took around 110 CPU hours (Matlab implementation,
Xeon 5472 3.0GHz CPU). The obtained classification model
was then tested on the corresponding test group. The presented
results are combined across all five training/test sessions.

For comparison, we also implemented the following four
benchmark algorithms:

1) RVoxM-NoReg: Similar to the regression experiment,
we implemented the RVoxM classifier with the spatial
regularization intentionally switched off, i.e., with λ =
0.

2) SVM: We also applied a linear support vector ma-
chine (SVM) classifier, a demonstrated state-of-the-art
AD classification method [39], to the cortical thickness
maps. For this purpose, we used the popular SVM im-
plementation provided by the freely available LIBSVM

3For detailed information, visit http://www.adni-info.org/
4We selected the first 150 AD patients that were successfully processed

with FreeSurfer.
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Fig. 6. The receiver operating characteristics curve for five classifiers
discriminating between AD patients and controls. Area under the curve values
are listed in parentheses in the legend. See text for a description of the
methods.

software package [60].
3) SVM-Seg: We applied the same linear SVM implemen-

tation to thickness measurements in 70 automatically
segmented cortical subregions. In particular, we used
FreeSurfer to parcellate the entire cortical mantle based
on the underlying sulcal pattern [61], computed a list of
average thickness measurements for each of the resulting
subregions, and used these as the attribute vector for the
SVM.

4) RVM-Seg: Finally, we also applied an implementation
of the RVM binary classifier5 with a linear kernel to the
same thickness measurements of the 70 cortical ROIs
used for SVM-Seg.

Figure 6 shows the receiver operating characteristics (ROC)
curve for RVoxM and the four benchmark algorithms. The
ROC curves were generated by varying a threshold applied to
the continuous prediction score that each of the algorithms
generates (eq. (26) for RVoxM). For each threshold value,
we computed the specificity and sensitivity values on each
test group corresponding to each of the five folds. These
specificity and sensitivity values were then averaged to obtain
the presented ROC curves. Based on the area under the ROC
curve (AUC), SVM (93%) and RVoxM (93%) perform the best
for discriminating AD patients from healthy controls.

There is a clear difference between RVoxM and RVoxM-
NoReg (AUC: 89%), which once again underscores the sig-
nificance of incorporating the spatial smoothness term into the
model. Although SVM and RVoxM have a similar classifica-
tion performance, it is worth emphasizing that SVM uses all
82,000 mesh vertices simultaneously to make its predictions,
complicating the interpretation of its underlying models.

Figure 7 illustrates the RVoxM “relevance vertices” that
play a role in discriminating the two clinical groups based
on thickness measurements. This figure shows the average µ∗

5http://www.vectoranomaly.com/downloads/downloads.htm
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Fig. 7. Relevance “voxels” (or more accurately: vertices) for AD vs. control discrimination. The weights for the classification model, µ∗ (eq. (24) in which
the hyper-parameters have been set to their optimized values), averaged across 5 cross-validation sessions, are illustrated on an inflated cortical representation,
overlaid on the folding pattern of the FreeSurfer template subject. Blue regions have a negative contribution (assuming AD is positive) and red regions exhibit
a positive weight. Voxels with zero contribution are transparent.

!"#$

#"#$

Fig. 8. The frequency at which each vertex had a non-zero contribution in the final model across the five cross-validation sessions. Transparent voxels never
had a non-zero contribution.
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Fig. 9. Average RVoxM-based AD score for four groups in ADNI. Error
bars indicate standard error of the mean.

values, where the average was taken across the five cross-
validation sessions. Similar to the regression result, one can
appreciate that a large number of vertices have a zero contribu-
tion (i.e., the model is sparse), and that the relevance vertices
appear in spatial clusters. Figure 8 shows the frequency at
which each relevance vertex was selected (i.e., had a non-
zero contribution) across the five cross-validation sessions.
There are certain regions that consistently contribute across the
different training sessions (in particular those colored yellow).
These vertices include the entorhinal cortex, superior temporal
sulcus and posterior cingulate/precuneus, and overlap the so-
called default network regions that are known to be targeted in
AD [62]. However, there are other regions (mostly in shades
of red) that are less consistent and are chosen only in one
or two training sessions. We will discuss the possible causes
of such model instabilities, as well as ways to mitigate their
effect, in section VI.

We also used the RVoxM model from the first of the 5-
fold cross-validation training sessions to compute an “AD
score” (eq. (26) for all remaining ADNI subjects, which we
subdivided into four groups: (1) cognitively normal, healthy
controls, who remained so throughout the study and who
were not included in the training data set (N = 109); (2)
subjects with MCI who were stable and did not progress to
dementia (sMCI, N = 221); (3) subjects who had MCI at
baseline but then progressed to AD (pMCI; N = 159); and
(4) AD patients (N = 73). Figure 9 plots the average AD
score for each of these groups, computed from their baseline
MRI scans. We observe that, at baseline, the stable MCI group
has an average AD score less than 0.5 and therefore appears
more “control-like”, whereas the progressive MCI group has
a more “AD-like” average AD score that is greater than
0.5. These results suggest that an RVoxM based classification
of someone’s MRI scan might be informative for predicting
future clinical decline. To test this hypothesis directly, we
conducted a survival analysis with a Cox regression model [63]
on all MCI subjects combined (N = 380), where the outcome
of interest was time-to-diagnosis. Age, sex, education (years),

APOE ε4 allele count, APOE ε3 allele count and the RVoxM-
based AD score were entered as independent variables. The
only variable that was associated with time-to-diagnosis was
the RVoxM-based AD score (coefficient: 0.66, P-val < 10−3).
This results suggests that a baseline MRI scan contains
predictive information about future clinical decline and this
information is, to some extent, extracted by the RVoxM AD
classifier.

VI. DISCUSSION AND CONCLUSION

In this paper, we presented the Relevance Voxel Machine
(RVoxM), a novel Bayesian model for image-based prediction
that is designed to yield intuitive and interpretable results. It
allows the predictive influence of individual voxels to vary,
and to be more similar in biologically related areas than in
completely unrelated ones. Bayesian analysis is then used to
select the appropriate form of the model based on annotated
training data. As demonstrated in our experiments, RVoxM
yields models that are sparse and spatially smooth when spa-
tial proximity is used as a measure of biological connectivity.
We believe that such models are easier to interpret than models
that use all the image voxels simultaneously, or that base their
predictions on a set of isolated voxels scattered throughout
the image area. Importantly, our experiments also indicate that
RVoxM automatically avoids over-fitting to the training data
and produces excellent predictions on test data.

Compared to other prediction models used in medical image
analysis, RVoxM offers the following advantages:

• Regularization, feature selection, and biological consis-
tency within a single algorithm;

• Automatic tuning of all parameters, i.e., no free parame-
ters to set manually or via cross-validation; and

• Probabilistic classification predictions, rather than binary
decision outcomes.

Although we only applied RVoxM to structural gray matter
morphometry in this paper, the method is general and can
be extended to handle multiple tissue types at the same
time; analyze functional or metabolic imaging modalities; or
include non-imaging sources of information such as blood
tests, cerebrospinal fluid (CSF) markers, and genetic or de-
mographic data [28]. Furthermore, one can easily incorporate
more advanced measures of biological connectivity than the
simple spatial smoothness prior used in our experiments.
Connectivity information based on symmetry (if the two
hemispheres are expected to have similar contributions) or
obtained from functional or diffusion imaging can be added by
including extra terms “‖Γw‖2” in eq. (3), with corresponding
hyper-parameters that will then be automatically learned from
the training data as well.

When discussing the properties of RVoxM, it is useful
to consider the training-phase optimization of its hyper-
parameters within an ideal Bayesian framework, which would
not involve any optimization at all. For the sake of clarity, we
will concentrate on the regression case only, although similar
arguments apply to the classification case as well. Letting
η = (lnα1, . . . , lnαM , lnλ, lnβ)T denote the collection of
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log-transformed hyper-parameters6, and assuming a uniform
prior distribution on η: p(η) ∝ 1, the true Bayesian predictive
distribution over the target variable t for a new input image x
is given by

p(t|x,X, t) =
∫
η

∫
w

p(t,w,η|x,X, t)dwdη,

which involves integrating over both w and η. RVoxM ef-
fectively performs the integration over w analytically, while
approximating the remaining integral over η, assuming it
is dominated by the optimal hyper-parameter value η∗ =
arg maxη p(η|X, t):

p(t|x,X, t) =
∫
η
p(t|x,X, t,η)p(η|X, t)dη

' p(t|x,X, t,η∗). (29)

RVoxM first estimates η∗ by maximizing p(η|X, t) ∝
p(t|X,η) (optimization of eq. (5)), and then uses the resulting
distribution p(t|x,X, t,η∗) to make predictions (eq. (15)).

The approximation of eq. (29) has the disadvantage that
it gives rise to a high-dimensional, non-convex optimization
problem, putting RVoxM at risk of local optima and other con-
vergence issues [64]. As demonstrated in [65], these problems
can be avoided by approximating the integral over η using
Monte Carlo sampling instead: given enough samples from the
posterior p(η|X, t), the resulting predictive distribution can be
made arbitrarily close to the true one. Although theoretically
superior to RVoxM, this approach will only be computationally
feasible when a small subset of potentially relevant image
voxels are somehow selected a priori [65], limiting its appeal
in practical settings.

The ideal Bayesian prediction model that RVoxM approxi-
mates also helps explain why RVoxM tends to set many voxel
weights to zero values, even though its prior (eq. (4)) may not
seem to encourage such solutions. Writing

p(t|X, t,x) =
∫
w

p(t|X, t,x,w)p(w|X, t)dw

reveals that the predictive distribution is obtained by adding
contributions of all possible values of w, each weighed by its
posterior probability p(w|X, t). Although the integral over w
can not easily be approximated to obtain a practically useful
algorithm [44], [66], the crucial insight is that the posterior
p(w|X, t) ∝ p(t|X,w)p(w) will be high for w’s with many
zero entries, because the “true” prior

p(w) =
∫
η
p(w|η)p(η)dw, (30)

obtained by integrating out the hyper-parameters, encourages
such solutions. Indeed, for the special case where the spatial
smoothness hyper-parameter λ is clamped to zero but other-
wise p(η) ∝ 1, eq. (30) evaluates to [44]:

p(w) ∝
∏

i

1/|wi|,

6It is natural to work with log-transformed values here, as the hyper-
parameters are all positive (scale) parameters.

which is sharply peaked at zero for each voxel and therefore
favors sparsity. This “true” prior can be compared to the
so-called Laplace prior p(w) ∝

∏
i exp(−|wi|) often used

to obtain sparsity in Bayesian models [67], or – taking the
negative log – as the `1 norm

∑
i |wi| in the popular “lasso”

regularized regression method [68].
RVoxM goes beyond merely inducing sparsity in the models

by allowing non-zero values for the hyper-paramer λ, enforc-
ing spatial consistency. This helps remedy the well-known
problem with sparsity-only promoting methods that when
several variables (i.e., voxels) have similar prediction power,
only one tends to be picked with little regard as to which
one [69], [70]. In order to avoid such overly sparse models,
which hamper biological interpretation, a popular solution in
regularized regression is the so-called “elastic net”, which adds
a `2 regularization term to the sparsity-inducing `1 regularizer
of lasso [70]. In Bayesian approaches, proposed remedies
include using hyper-parameters that optimize another objective
function than the likelihood [69], or assuming voxels belong
to a small set of clusters with common regularization [65],
[71]. The way RVoxM addresses this issue is by expanding
the family of candidate models that can be tried to explain the
training data, relying on the fact that relatively simple models
– with fewer degrees of freedom – tend to provide better
explanations than overly complex ones [38]. By also allowing
high values of λ, simple and therefore good models are no
longer only those in which just a select few predictive voxels
are in the model, but especially those in which neigboring,
similarly predictive voxels are in the model together.

Because of the way it seeks sparse but spatially connected
solutions, RVoxM is closely related to so-called “structured
sparsity”-inducing methods, which aim at selecting problem-
relevant groups of variables for inclusion in the model, rather
than single variables individually [72]–[76]. In such methods,
group-level sparsity is often obtained by variations on the
so-called “group lasso”, a generalization of lasso in which
the `2 norm of each group, rather than the amplitude of
individual variables, is penalized using the `1 norm [77],
[78]. Perhaps most closely related to RVoxM is the so-called
“smooth lasso” method, a variant of the elastic net in which
the `1 norm for sparsity is preserved, but the `2 norm on the
variables themselves is replaced by an `2 norm on their spatial
derivatives [79].

An issue we have not fully addressed in this work is
quantifying how repeatable the relevant voxel set is when
the RVoxM model is trained on different subjects drawn
from the same population. Although the relevant voxel pattern
was quite consistent across different training datasets in our
regression experiment (see bottom row of Figure 3), there
was an appreciable amount of variation in the classification
case (see Figure 8). We believe such variations can be further
decreased by making more relevant anatomical information
available to the RVoxM model – e.g., by including a symmetry
regularization term in the prior. The stability of the relevant
patterns and the predictions can also be improved by using
randomization experiments, in which different models are
learned from resampled training data to obtain an average,
ensemble prediction model [80], or to select only those vox-
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els that appear frequently across the different models [81],
[82]. Instability of informative feature sets has been studied
extensively in the literature [83], [84], and can be attributed
to three related factors: (1) the limited amount of training
data and over-fitting to the quirks of these data, (2) the
mismatch between the utilized model and the underlying true
discriminative pattern, and (3) the local optima the numerical
solver might get trapped in. All three factors apply to the
case of RVoxM, and a detailed analysis of these effects will
be carried out in future work, using techniques similar to the
ones employed in [85]–[87].

One drawback of the presented training algorithm is its
computational complexity, which under typical conditions is
quadratic in the number of voxels. Our experiments demon-
strate that, using standard Matlab code, we can train on
a dataset of relatively high-resolution data from hundreds
subjects in a matter of days. This computation time, we
believe, is acceptable for such datasets that can take years
to collect. It is worth emphasizing that a heavy computational
burden is incurred only once for a given training dataset and
that, after the model has been trained, making predictions on
new images is very fast. Since RVoxM automatically tunes all
its hyper-parameters within a single training session, there is
no need for the repeated cross-validation training runs that are
necessary in most other image-based prediction methods and
that also take time. Furthermore, more advanced regularization
terms can be added to the prior of RVoxM with minimal
additional computational cost, whereas the number of training
runs required to set the corresponding hyper-parameters using
cross-validation would increase exponentially and quickly
become impractical.

Although the reported computation times can be reduced
significantly by using a non-Matlab based implementation that
exploits the parallellization opportunities inherent in Algo-
rithm IV.1; classification problems with more than two classes,
as well as higher-resolution and much larger datasets, will
still present a serious computational challenge to analyze with
RVoxM. The training algorithm we have presented starts with
all voxels included in the initial model, and gradually prunes
the vast majority of the voxels as the iterations progress.
Although this causes the algorithm to gradually speed up,
the computational complexity of the first few iterations is
still quadratic in the number of voxels. Similar to the dra-
matically accelerated training procedure for RVM models
developed in [88], we are therefore investigating an alternative,
“constructive” approach that starts with an empty model and
sequentially adds voxels instead, while also modifying the
weights of the voxels already in the model. In [88], this
was accomplished by deriving an analytical expression for the
optimal weight of a voxel, given the current weight of all other
voxels; we are currently exploring if a similar approach is also
possible for RVoxM.
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APPENDIX A
DERIVATIONS FOR THE REGRESSION MODEL

We here derive various partial derivatives of
ln p(t|X,α, β, λ) with respect to the hyper-parameters
α, β, and λ.

Using the determinant identity

|β−1I + XP−1XT| = |β
−1I||βXTX + P|

|P|
and Woodbury’s inversion identity(
β−1I + XP−1XT)−1

= βI− βX
(
βXTX + P

)−1
XTβ,

we can write ln p(t|X,α, β, λ) as:

ln p(t|X,α, β, λ) = −N
2

ln (2π)− 1
2

ln |C| − 1
2
tTC−1t

= −N
2

ln (2π) +
N

2
lnβ − 1

2
ln |Σ−1|+

1
2

ln |P| −
1
2
tT (βI− βXΣXTβ

)
t. (31)

Using Σ−1 = βXTX + diag(α) + λL, we obtain

∂ ln |Σ−1|
∂αi

= trace
(

Σ
∂diag(α)
∂αi

)
= Σii, (32)

and similarly

∂ ln |Σ−1|
∂β

= trace
(
ΣXTX

)
= trace

(
XΣXT) (33)
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and

∂ ln |Σ−1|
∂λ

= trace(ΣL). (34)

Using the same technique on P = diag(α) + λL, we have

∂ ln |P|
∂αi

=
(
P−1

)
ii

(35)

and

∂ ln |P|
∂λ

= trace(P−1L) (36)

Finally, we have

∂
(
tTXΣXTt

)
∂αi

=
∂
(
tTX

(
Σ−1

)−1
XTt

)
∂αi

= −tTXΣ
∂Σ−1

∂αi
ΣXTt

= − 1
β

µT ∂diag(α)
∂αi

µ
1
β

= −µ
2
i

β2
, (37)

and similarly

∂
(
tTXΣXTt

)
∂β

=
−1
β2

µTXTXµ (38)

and

∂
(
tTXΣXTt

)
∂λ

= − 1
β2

µTLµ. (39)

To obtain eq. (7), we take the partial derivative of eq. (31)
with respect to αi and plug in the result of eq. (32), (35), and
(37), yielding

∂ ln p(t|X,α, λ, β)
∂αi

= −1
2

Σii +
1
2
(
P−1

)
ii
− 1

2
µ2

i . (40)

Rewriting P−1 using Woodbury’s inversion identity as

P−1 = diag(
1
α

)−

diag(
1
α

)
(

I + λLdiag(
1
α

)
)−1

λLdiag(
1
α

)

= diag(
1
α

)− λP−1Ldiag(
1
α

) (41)

and plugging this result into eq. (40), we finally obtain eq. (7).
Taking the partial derivative of eq. (31) with respect to β

and plugging in eq. (33) and (38) yields

∂ ln p(t|X,α, λ, β)
∂β

=
N

2β
− 1

2
trace

(
XΣXT)− 1

2
tTt +

tTXµ− 1
2
µTXTXµ (42)

which explains eq. (8). Similarly, we obtain eq. (9) by taking
the partial derivative of eq. (31) with respect to λ and plugging
in eq. (34), (36), and (39).

APPENDIX B
NON-NEGATIVE PROPERTIES OF THE UPDATE RULES

We here show that the update equations (12) and (13) always
yield non-negative values.

For eq. (12), we have:

αnew
i =

1− αiΣii − λ
(
P−1L

)
ii

µ2
i

=
αi(P−1 −Σ)ii

µ2
i

(43)

=
αi(P−1 −P−1 + ZTC−1Z)ii

µ2
i

(44)

=
αi

µ2
i

zT
i C−1zi ≥ 0,

where we have used eq. (41) to obtain eq. (43), and expanded
Σ using eq. (27) to obtain eq. (44). C is the positive semi-
definite matrix defined in eq. (6) and zi is the i’th column of
Z = XP−1.

For eq. (13) we have:

βnew =
N − trace(βXΣXT)

‖t−Xµ‖2

=
N − trace(βXTXΣ)

‖t−Xµ‖2

=
N − trace

(
(Σ−1 −P)Σ

)
‖t−Xµ‖2

=
trace(PΣ)
‖t−Xµ‖2

=
trace(STPS)
‖t−Xµ‖2

=
∑

i sT
i Psi

‖t−Xµ‖2
≥ 0, (45)

where we have used Σ = (P + βXTX)−1, Σ = SST is the
Cholesky decomposition of Σ, si is the i’th column of S and
the inequality is due to P being positive semi-definite.

APPENDIX C
DERIVATIONS FOR THE CLASSIFICATION MODEL

We here explain how we compute the most probable voxel
weights in the classification model (eq. (23)) and locally
approximate the classification training problem by a regression
one (eq. (22)).

For a given set of hyper-parameters {α, λ}, we compute
the voxel weights wMP maximizing the posterior distribution
p(w|X,b,α, λ) ∝ p(b|X,w)p(w|α, λ) by using Newton’s
method, i.e., by repeatedly performing

wnew = w−
(
∇∇ ln p(w|X,b,α, λ)

)−1

∇ ln p(w|X,b,α, λ)

until convergence, with gradient

∇ ln p(w|X,b,α, λ) = XT(b− σ)−Pw

and Hessian matrix

∇∇ ln p(w|X,b,α, λ) = −
(
XTBX + P

)
,



IEEE TRANSACTIONS ON MEDICAL IMAGING 15

where we have defined σ = (σ1 . . . , σN )T, σn = σ(xT
nw),

B = diag(β1, . . . , βN ), and βn = σn(1−σn). Since the Hes-
sian is always positive definite, ln p(w|X,b,α, λ) is concave
and therefore has a unique maximum [41].

Once the optimum weights wMP are obtained, we approx-
imate the integral in eq. (21) by replacing the integrand with
an unnormalized Gaussian centered around wMP (Laplace
approximation), yielding:

ln p(b|X,α, λ)

' ln

[
p(b|X,wMP)p(wMP|α, λ)

√
(2π)M

|H|

]
(46)

for the log marginal likelihood, where we have defined

H = −∇∇ ln p(w|X,b,α, λ)
∣∣∣
w=wMP

.

Around the most probable voxel weights w̃MP corresponding
to some hyper-parameters {α̃, λ̃} (eq. (23)), we can linearize
σ(xT

nw) as follows:

σ(xT
nw) ' σ(xT

nw̃MP) + β̃nxT
n (w − w̃MP) ,

and therefore

σ ' σ̃ + B̃X(w − w̃MP).

As a result, we have that

∇ ln p(b|X,w) = XT(b− σ)
' XT(b− σ̃ + B̃Xw̃MP − B̃Xw)
= XTB̃(̃t−Xw)

and therefore that

ln p(b|X,w) ' lnN (̃t|Xw, B̃−1) + const, (47)

where the constant depends only on w̃MP. Using this result,
we obtain

H ' XTB̃X + P = Σ−1, (48)

and because

∇p(w|X,b,α, λ)
∣∣∣
w=wMP

= 0

also that
XTB̃(̃t−XwMP)−PwMP ' 0

and therefore
wMP ' ΣXTB̃t̃. (49)

Plugging eq. (47) and (48) into (46), we have that

ln p(b|X,α, λ) ' −N
2

ln(2π) +
1
2

ln |B̃| −
1
2

(̃t−Xw)TB̃(̃t−Xw) +

1
2

ln |P| − 1
2
wT

MPPwMP −
1
2

ln |Σ−1|+ const

' −N
2

ln(2π) +
1
2

ln |B̃| −
1
2

ln |Σ−1|+ 1
2

ln |P| −
1
2
tT(B̃− B̃XΣXTB̃)t + const,

where we have used eq. (49) in the last step. Comparing this
result to eq. (31) finally yields eq. (22).
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